Nonperiodic ising quantum chains and conformal invariance
نویسندگان
چکیده
منابع مشابه
Non-Periodic Ising Quantum Chains and Conformal Invariance
In a recent paper, Luck [1] investigated the critical behaviour of one-dimensional Ising quantum chains with couplings constants modulated according to general non-periodic sequences. In this short note, we take a closer look at the case where the sequences are obtained from (two-letter) substitution rules and at the consequences of Luck’s results at criticality. They imply that only for a cert...
متن کاملConformal Invariance in Periodic Quantum Chains
We show how conformal invariance predicts the functional form of two-point correlators in one-dimensional periodic quantum systems. Numerical evidence for this functional form in a wide class of models — including long-ranged ones — is given and it is shown how this may be used to significantly speed up calculations of critical exponents. 05.70.Jk, 11.30.-j, 64.60.Fr Typeset using REVTEX
متن کاملIsing Quantum Chains
Le travail est désormais assuré d'avoir toute la bonne conscience de son côté : la propensionà la joie se nomme déjà " besoin de repos " et commencè a se ressentir comme un sujet de honte. [...] Oui, il se pourrait bien qu'on en vˆıntà ne point céderà un penchant pour la vita contemplativa (c'est-` a-dire pour aller se promener avec ses pensées et ses amis) sans mauvaise conscience et mépris de...
متن کاملAperiodic Ising Quantum Chains
Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck’s criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck’s conjectures for this case are confirmed and refined...
متن کاملConformal invariance and the Ising model on a spheroid.
We formulate conformal mappings between an infinite plane and a spheroid, and one between a semi-infinite plane and a half spheroid. Special cases of the spheroid include the surface of an infinitely long cylinder, of a sphere, and of a flat disc. These mappings are applied to the critical Ising model. For the case of the sphere and the flat disc, we derive analytical expressions for the second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 1994
ISSN: 0022-4715,1572-9613
DOI: 10.1007/bf02188226